
AD-AOaG 359 WEIZMANN INST OF SCIENCE REHOVOTH (ISRAEL) DEPT OF --ETC F/S 9/2
SYNTHESIZED STRUCTURED PROGRAMMING(U)N , _ F E JAN 80 Z MANNA AFOSR-78-3 43

UNCLASSIFIED RADC "TR-79-326 NL2 *flllllllllll
mlllhlllllEEEI
EIIIIIIIIIEEII
IIIIIIIIIIEEII
-ElllllllIIl
EEl~lEEEElllEI
-EEEEEEEElllI

2 ' 12.5
*-2

11111 L 11M 0IIIIIII-"

11111-25 IlIA f 1. 6

&WIROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

.h

tmV ,6 ,

'p.. A..5
4's5

"" i

IWW

'I ~..

UNCLASSIFIED
SCko 4LASSIFICATION OF TNIS PAGE (Oles Dle. Eat e.)__________________

RAC-79-326/

SYNTHESIZED STRUCTRDPORMIG nlehia~~t

7. A T~~ S:.COTRAcr OR GRANT NUMNER(d)

6. PERFORMING ORGANIZATION NAME AND ADORE~ I0. PROGRAM ELEMENT. PROJECT, TASK

Weizmann Institute of Science 7/272
Applied Mathematics Department 5 52
Rehovot, Israel

1I. CONTROLLING OFFICE NAME ANDOADDRESS

Air Force Office of Scientific Research (NM) Jan A-8
Bldg 410 Boiling AFB13NUBROPAE
Wash DC 20332 18

14. MONITORING AGENCY NAME & AOORESS~it differteu from Confrolld Office) 15. SECURITY CLASS. (oI' 11M-i,0Or

Rome Air Development Center (ISIS) UNCLASSIFIED
Griffiss AFB NY 13441 IS. ECLASSIFICATION' DOWNGRADING

NASCN EDULE

IS. DISTRIBUTION STATEMENT (of tise Report)

Approved f or public release; distribution unlimited.

I?. DISTRIBUTION STATEMENT (of the abstract enterod is Block 20, it differenit from. Report)

Same

Prepared in cooperation with N. Dershovitz

program modification program annotation
program debugging
program instantiation

g program abstraction
program synthesis
20O. MTRACT (Continue or, rovrsoe side if necessary and Idenstify by block numbe)

;Techniques of program modification are formulated, and an experimental soft,
ware system Implemented, whereby a given program that achieves one goal can be

I. transformed into a new program to achieve a different goal. The essence of the
approach is to find an analogy between the specifications of the given program
and of the desired program, and then to transform the given program accordingly.

.b. ~~, JProgram debugging is considered as a special case of modification: if apr
gram computes wron results. it must be modified to achieve the Intended result.4

pFOM14 3 UNC1LASSIIRDDO JANA7 73

SECURITY CLASSIFICATION OF ?"4IS PAGE onse oret tssee)

iN /

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(W7mae Data Enterod)

Item 20 (Cont'd)

)The abstraction of a set of concrete programs to obtain a program schema and

the instantiation of abstract schemata to solve concrete problems are also
viewed from the perspective of modification techniques.

Two tools are developed as aids in the above tasks: We describe trans-
formation rules for synthesizing code from specifications in a top-down
manner. They may be used when - in the course of modifying a program - the
need arises to completely rewrite a program segment. For the purpose of
determining what an incorrect program actually does - before attempting to de-
bug it - we develop techniques of program annotation. These techniques are
expressed as inference rules and derive invariant assertions from the program

text.

these notes were prepared jointly by N. Dershowitz and Z. Manna. They are
based on the papers by Dershowitz and Manna (1977, 1978) and Dershowitz's PH.D.
Thesis (1978).

I.

UNCLASSIFIED

1. .% SECURITY CLASSIFICATION OF THIS PAEC9Ihe Date ftors*

....-

EVAUATICt4

This research effort form part of a broad integrated project under

RADC TPO No. 5 (C3 System Availability), Thrust A (Software Cost

Reduction), to attack the problem of spiraling Air Force software life-

cycle costs. Complemented within the RADC project both technologically

and tenporally, this medium long range, high payoff effort focuses on

automated software synthesis and modification. It develops theoretical

techniques utilizing program anrotation, abstraction, instantiation aid

transformation. These techniques, and the emerging theory that unifies

them, form the basic substructure of future undertakings that will

*. exentually result in automated production line aids for efficient soft-

ware production and maintenance.

NORTHRUP FOWLER III A-osioa or
Project Engineer S

DOC TAB
Uianounced
Just itication

e By

DistLribution"o~v.llabit~L Codes
Avail and/or

Dist special

i.

ug~ - -'

U

1

I
$

CHAPTER I

INTRODUCTION

* I

I.

'I

1~..

Programming begins with the specification of what the desired program should do; the
programmer's job Is $o develop an executable program satisfying those specifications. The
goal of automatic-programming research is to formalize the methods and strategies used
by programmers so that they may be Incorporated In an automatic, or Interactive,

programming environment.

While most automatic-programming research has focused on the creation of programs

ex nrilo, very little of this work concentrates on applying past experience to new
problems. Typically, a programmer directs more of his effort at the modification of
programs that have already been written than at the development of original programs.

The evolutionary cycle of a program Includes debugging, changes to meet amended
specifications, and extensions for expanded capabilities. Even when nominally engaged in

the construction of a new program, the programmer Is constantly recycling Oused m

programs and adapting basic principles that have already been Incorporated Into other
programs. Ideas of general applicability are abstracted Into subroutines or programming

techniques and then applied to specific problems at hand.

In this research, we have attempted to emulate the evolutionary aspects of
programming In the context of an automatic program-development system. We have

formulated techniques of program modification, whereby a given program that achieves one

goal can be transformed into a new program to achieve a different goal. The essence of

the approach is to find an analogy between two sets of specifications, those of a program

that has already been constructed and those of the program that we desire to construct.
This analogy is then used as the basis for transforming the existing program to meet the

new specifications. Program debugging Is considered as a special case of modification: if a

program computes wrong results, It must be modified to achieve the intended results.

Program modification Is not the only manner In which a programmer utilizes previously
acquired knowledge. The human programmer improves with experience by assimilating
various programming methods that he encounters, and judiciously applying the learned
Ideas to new problems. After coming up with several modifications of his first "wheel", he
is likely to formulate for himself (and perhaps for others) an abstract notion of the
underlying principle and reuse It In new, but related, applications. Program schemata are a
convenient form for remembering such programming knowledge. A schema may embody
basic programming techniques and strategies (e.g. the generate-and-test paradigm or the

binary-search technique) and contains abstract predicate, function, and constant symbols,

In terms of which Its specification is stated.

iN

- - ..-..[.

4

INTRODUCTION 3

The bstracton of a set of concrete programs to obtain a program schema and the
instantiaton of abstract schemata to solve concrete problems may be viewed from the
perspective of modification techniques. This perspective provides a methodology for
applying old knowledge to new problems. Beginning with a set of programs sharing some
basic strategy and their correctness proofs, a program schema that represents the
embedded technique is sought. Preconditions for the schema's applicability are also
derived from the correctness proofs. The schema's abstract specification may then be
compared with a given concrete specification and an instantiation found that, when applied
to the schema, yields a concrete program. If the nstantation satisfies the preconditions,
then the correctness of the new program is guaranteed.

Extending a program to satisfy additional specifications is another form of program
modification. Techniques are required to construct code that extends the Incomplete
program to achieve the remaining specifications, while ensuring that the original
specifications continue to be satisfied. Modification based on analogy and extension can
be combined to solve a given problem. The analogy between a new problem and a given
program may only indicate how to achieve part of the specified goal; the transformed
program is then extended to achieve the remainder.

Sometimes, in the course of modifying a program or Instantiating a schema, It may turn
out that a program segment, e.g. a loop initialization, must be constructed from scratch.
Top-down synthesis techniques are useful for this purpose. Beginning with the specifications
of the desired segment, the goal is to develop the program step by step until executable
code Is obtained. Each step consists of rewriting a segment of the program in Increased
detail. Since every step is transparent enough to ensure correctness, each partial
program In the series is equivalent to its predecessor. In particular, the final program Is
guaranteed to satisfy the initial specifications.

A prerequisite for debugging an Incorrect program is knowledge about what the
program actually does, as opposed to what it was intended to do. Moreover, various facts
about a program are frequently needed for the purposes of modification, though they were
not supplied by the programmer. For these purposes, we devote attention to the
development of annaeftin techniq s for documenting a program with assertins. Assertlons
are a useful means of documenting facts about the internal workings of a program; they
relate to specific points in the program and assert that some roation holds for the current
values of the program variables whenever control passes through that point. Given a
program along with its Input-output specification, the task is to annotate the program
Incrementally with assertions that explain the actual workings of the program regardless of

.,..-- - - --..

4

whether the program Is correct. These annotations can be used as aids in the debugging
of an incorrect program. They can also be used for verifying the correctness of programs

or for analyzing program efficiency. Our annotation techniques are formulated as inference

rules.

The techniques .of program manipulation that we have investigated are for the most
part amenable to automation, and we have implemented them in an experimental system,

written in OLISP. Our implementation consists of three parts: modifier, annotator, and
sywtheisztr. The Implementation was meant to serve as a proving ground for Ideas; many of

the examples presented in this report have run successfully. The modifier has, for
example, modified an integer square-root program to compute quotients and has debugged
an Incorrect real-division program. Our annotator can generate the necessary invariants

for these programs, and for more complex programs, e.g. selection sort. The synthesizer
has successfully constructed several complete programs, such as one for finding the
minimal element of an array, or for finding Its value.

The next chapter presents a general overview of the various aspects of program
modification; their Individual roles and their close interaction are Illustrated in an account

of the evolution of an example program. The remainder of this report is composed of

chapters on techniques for
* modification and debugging,

* abstraction and instantlatlon,

* synthesis, and

S annotation.
Each of these chapters is largely self-contained, though a common set of examples Is

threaded through them. Bibliographic remarks are included in the Individual sections.

I.

! -

Atop -f

CHAPTE U

GENERAL OVERVIEW

L

fI.

In this overview we shall trace the life-cycle of a single example program, In an
attempt to Impart the overall flavor of our approach to program modification, and to
Illustrate how the various aspects are Interrelated. More formal treatments of our
techniques may be found In the Individual chapters. This example Is outlined in Figure 1; it

owes Its motivation to Wensley [1959] and Dijkstra [1976].

bad real-division program

debugging
(using annotation)

good real-division programp I~ei o
W. .mod~ilq!ion

real square-root program

I I

binary-search schema

Instantiation
(using synthesis)

integer square-root program

Figure 1. Evolution of a division program

We begin with an Imperfect program to compute the quotient of two real numbers. We

then debug the program, after determining enough about what the program actually does.
Once the division program is corrected, It Is modified to compute the square-root of a real
number. Underlying both the division and square-root program is the binary-search

!° technique; by abstracting these two programs, a binary-search schema is obtained. This
schema Is then instantiated to obtain a third program, one to compute the square-root of an
Integer. Part of that program is synthesized from scratch.

A.

GENERAL OVERVIEW 7

I. Th Proelim

Consider the problem of computing the quotient z of two nonnegative real numbers c
and d within a specified (positive) tolerance e. These specifications are conveniently
expressed In a high-level assertion language in terms of an output specification and an input
specification. The output specification states the desired relationship among the program
variables upon termination. In nur case, the output specification

Ic/d-zI<e

Indicates that the (absolute value of the) difference between the exact value of c/d and
the result z should be less than e. The Input specification defines the set of Inputs on
which the program is Intended to operate. Assuming that we only wish to solve this
problem for the case where the numerator c is smaller than the denominator d, the
appropriate input specification for the prograim is

Oc(<d A eO>0

We can express our goal in the form of the following skeleton program:
I I

P,: begin comment real-division program

assert Oc(d, e>O I
achieve kld-zl(e varying z

I e.n I

The achieve statement,

achieve k/d-zI<e varying z

specifies the relation between the variables z, c, d, and e that we wish to attain at
the end of program execution. The clause

varying z

Indicates that only the variable z may be set by the program; the variaoles C, d, and e
contain input values that may not be modified. The assert statement,

assert O5c(d, e)O

attached to the beginning of the program, specifies what relation between the Input
variables may be assumed to always hold at the beginning of program execution.

An achieve statement may be considered as a "very high-level" programming
construct that "somehow" achieves the specified relation at that point In the program. It
Is not directly executable; the task of the programmer- be he human or machine - is to

-.

w 6

systematically transform the achieve statement into an executable program by replacing

it with more concrete code. If the replacement itself contains achieve statements, then
the process iterates, step by step, until a machine-executable program Is obtained that

contains only primitive statements and operators. This final program will be of the form

P,: begin comment rtal-divslion program

assert Osc<d,)0

purpose Ic/d-le
i code

suggest kld-zl(e

end I

The purpose statement,

purpose kld-zl(e

is a comment describing what the intent of the code following it is. The statement

suggest k/d-zl<e

contains the programmer's contention that the preceding code actually achieves the

desired relation, i.e. the relation Ic/d-zl<e holds for the value of z when control reaches

the end of the program.

When an assertion, such as kld-zI<e, has been proved to hold each time control
passes through some point, then it is said to be an invariant assertion at that point. As long

as it has not been proved to hold, it is called a candidate. In particular, an output candidate,
associated with the point of termination, is a local invariant at that point, if the final values
of the variables satisfy the asserted relation when the program terminates. The assertion

Is termed an output invariant once this has been proved to be the case. A program, then,
may be considered correct if there exist output Invariants that Imply the output

specification.

For the problem at hand, we must assume that no general real-division operator / is
available, though division by an integer is permissible. Otherwise, the problem could be

solved with a trivial assignment statement

z :- c/d

The reader may also note that, were it not for the restriction that only the variable z may

be set by the program, the problem could be solved, for example, by setting both z and C

to 0. This would satisfy the specification kld-zj(#, but is not the intended solutlon.

,b. •Now let us assume that a programmer went ahead end constructed the following
program:

1b

GENERAL OVERVIEW 9

P,: begin comment suggested dimlom preem

B: assert Oft<d, #>O

purpose kId-zl(e
purpose zScId, cld<z.y, ye
(Z, Y) :- (0, 1)

loop L,: suggest r.%ld, cldzy

until YS#

if d.(z:y)Sc then z :- z~y ft
Y:- Y/2

repeat

suggest zScId, c/d(x*., yS#
A,: suggest kld-zI<0

end

The comment

purpose Zscld, cld(z.+, yS,

Indicates that the programmer's intontion Is to achieve the desired relation k/d-zl<e by
achieving the three subgoals z.Sld, cld(z+.y, and ySe. Achieving these relations Is
sufficient for Ic/d-zJ<* to hold. To achieve them, the programmer constructed an iterative
loop intended to keep the first two relations invariantly true while making progress towards
the third. The Intended loop Invarlants are given in the statement

suggest zc/d, cld<:.y

at the label L, ; they are first Initialized by the multiple assignment

(r,Y) - (0,)

since both S/d and c/d(O.I are Implied by the assumption that OSc(d. The two
loop-body statements

if d.(z.,)sc then z :a z*y f
:- Y/2

are then repeated until the test

I. until ,Se

L ".

